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ABSTRACT

This report describes the method of integration that is used in a Lincoln Laboratory

computer program (the Planetary Ephemeris Program) to determine as functions of time

the position and velocity of the Moon and the partial derivatives of these quantities

with respect to initial conditions. The method consists or numcrical,, ine t-i-n - the

differential equations for the differences between the positions, velocities and partial

derivatives in the true lunar orbit and in Brown's mean lunar orbit.
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GENERATION OF THE LUNAR EPHEMERIS

ON AN ELECTRONIC COMPUTER

I. INTRODUCTION

A computer program, called the Planetary Ephemeris Program (PEP), is being written at

Lincoln Laboratory. The purpose of the program is to improve planetary and luna- ephemerides

by using the results of radar and optical observations. In this report we describe the rnethod of

integration that is used in PEP to determine as functions of time the position and velocity of the

Moon and the partial derivatives of these quantities with respect to initial conditions.

In Ref. i we described Encke's method of integration used in PEP for the planets and the

Earth-Moon barycenter; we also presented Encke's method of integration for the Moon. How-

ever, this method is not satisfactory for the Moon, since the 'notion of the Moon deviates greatly

from elliptic motion. In fact, the expreosioi1 given in Brown's lunar theory for the mean lunar

orbit 2 implies that the Moon approximately follow s an ellipse whose ascending node moves back-

ward along the ecliptic one revolution in 18.6 years and whose perigee advances one revolution

in 6 years.

Our method of integration for the Moon utilizes Brown's mean lunar orbit rather than the

initial osculating elliptic orbit of Encke's method of integration. Namely, let (x ,..., x 6 ) denote
1 6the position and velocity in the true orbit of the Moon and let (y, .. . , y ) denote the position and

velocity in Brown's mean lunar orbit. We then numerically integrate the differential equations
k =k _ yk k

for the k x yk, determining the x from the results of the integration'by the fact that the
yk are known as functions of time. The partial derivatives axk/ 0apj of position and velocity with

respect to initial osculating elliptic orbital elements (63...., ) needed in fitting to observations

are determined either (1) by assuming that these quantities are equal to the partial derivatives
ayk/af j of position and velocity in Brown's mean lunar orbit with respect to initial mean orbital

elements (3, ... , 16) or .) by numerically integrating the differential equations satisfied by the

quantities i k = Oxk/aflj - 0yk/ j3 . Opti .1 (1) might gii e results of the accuracy required by the

least-squares proce.3s of fitting to observations. Not having to follow the exact procedure of

(2) would save a great deal of computer time. The partial derivatives &x k/a of position and

velocity with respect to parameters a that are not initial conditions (such as the mass of the

Moon or the combined mass of the Earth and Moon) are determined by numerically integrating

the differential equations for these quantities; since these equations are given in Ref. 3, we do

not derive them in this report.

We intend to integrate the equations in - coordinate system referred to the mean equinox

and equator of 1950.0. The use of this coovd .,ate system dictates some of the manipulations

we perform in Secs. III and IV on Brown's nean lunar orbit, since the reference angles for this

orbit are given relative to the mean equinox and ecliptic of date.

1



The differential equations of motion of a given body about a central bod can be numerically

integrated with arbitrarily given accuracy over an arbitrarily given period of time if a small

enough interval of integration is used and if enough figures can be handled in the computations

to prevent significant accumulation of round-off errors. By subtracting a mean orbit from the

true orbit as we do in the case of the Moon, the requirements on the size of the interval of in-

tegration and on the number of figures needed are less stringent than if we just worked with the

original equations of motion.

The electronic computer (an IBM 360 Model 67) we intend to use for the numerical integ:a-

tion has hardware floating point arithmetic operations with execution times of a few microseconds

which handle 7, 16 or 32 decimal places. As presently envisioned, PEP will make certain crucial

computations (such as taking a numerical integration step or calculating mean lunar orbit quan-

tities) with 32 decimal place accuracy. Other computations (such as the determination of the

positions of perturbing planets) will be done with 16 decimal place accuracy. If necessary, the

design of PEP could be altered so that crucial computations ciuld be carried out to 64 (or even

more) decimal place accuracy. Such higher precision floating point operations would have to be

programmed operations rather than machine operations and would thus require a great deal more

computer time.

In any event, PEP can be designed to handle enough figures to prevent the significant accumu-

lation of round-off errors. The only question is whether so small an interval of integration is

needed that excessive computer time is used in integrating the motion of the Moon for centuries

with the accuracy required by observations. This point can only be determined by computer

experimentation. Because of the rapidity with which improvements are being made in electronic

computers, such a calculation could very well be handled within a decade if not at the present

time.

Since PEP is written in the Fortran IV language, only slight modification of the program will

be necessary for its use in future computers. It is quite easy to insert in PEP the effect of ad-

ditional forces, since it is the logic concerned with making a numerical integration step and ma-

nipulating input and output which makes the program intricate, not the specific terms on the right-

hand sides of the equations.

II. EQUATIONS OF MOTION AND EQUATIONS FOR PARTIAL DERIVATIVES

WITH RESPECT TO INITIAL CONDITIONS

We make the following definitions concerning subscripts:

s = Sun

e = Earth

m = Moon

c = Earth-Moon barycenter (center of mass of Earth-Moon system)

j= j th planet (j , , 4..... 9)

Let y denote the gravitational constant and suppose that (x , x , x ) is an inertial coordinate

system. We make the following notational conventions:

x k =kth coordinate of s, etc.

2



k = x.k  x = kth coordinate of j relative to s so that

k kxs =-Xsj , etc.

rsj= rjs = distance between s and j, etc.

M = mass of s, etc.s

M c = Me + Mm = mass of Earth-Moon barycenter

Let F k and F k denote the com-.onents of force on the Earth and Moon, respectively, in additione Im
to those due to the planetary and solar attractions. Then by Newton's laws of motion and gravity

we have

d2xk xk xk xk
e me + se + M F k

- nm 3  s 3+ F M M e
rme res r je

k =, 2,3 (1)
2 k k k k
d xm Xem X Msm Xk

M +M-- + ' Mj m + -1 F
dtZ rme rms j rj Mm I

Subtracting the first equation of (1) from the second equation of (1), we obtain

me -7Ms ( +  + ;,k + F - k 1 F k)=k , Z, 3 (Z)

dt s rme m e

where

kk kBk  M es Ins

res rm s /
k =, Z, 3 (3)

T k = M 5  M 3 x.'e=Ms E

jm je

Let Hk denote that part of the (Fk/M - F /M term due to the higher harmonics in the grav-n ee)k
itational potentials of the Earth and Moon, and hereafter let Fe and F denote the components
of force due to effects other than these higher harmonics and the planetary aad solar attractions.

Then (2) can be put in the form

dx kme k+3dt Xme

dxk+3 k
X me Bk  k H k  1 ( k 1 k =i,Z, 3 (4)dt -Ts (V 3 + In M F m e--

s r me m e

xk = xk xk+3 = xk+3 whent =tme ome me ome o

3



which is exactly as written in Ref. 4. The expression given for Hk in Ref. 5 includes the effect

of the second and third harmonics of the Earth and of the second harmonic of the Moon.

Let (6 ... 6 ) denote the osculating elliptic orbital elements at time to of the orbit of the

Moon about the Earth. Differentiating (4), we obtain6

d(axk /af 3 ) ax k+3

me m me
dt apj

d xexk+3/ kx 3 k+k3 "dt8 yaMj ax ax__

me m me Xmeme
mer me 1=1 m

. M m !T ewh1,en(5I' ko~
ax k IX k ax k+3 ax~k+3

me ome -me. ome when tt
a3 ap ~ aft~ 0j

k k kwhere the partial derivatives of B , ,Ik, H are given in Ref. 7.

I. MOTION IN BROWN'S MEAN LUNAR ORBIT

In the following the unit of time t is measured in ephemeris days. Let

i = inclination of Brown's mean lunar orbital plane on the mean ecliptic
of date

2 = ascending node of Brown's mean lunar orbital plane on the mean
ecliptic of date measured from the mean equinox of date along the
ecliptic

w = argument of perigee of Brown's mean lunar orbit measured along
the orbital plane from the ascending node on the mean ecliptic of date.

We then have

sin - 0.044886967 (i 5'145)

2= 259.183Z75 - 0052953922Z (t - t*)

+ I.557 x 10- 12 (t- t,) + 500 X 10- 2 0 (t - t,) 3  (6)

w = F' -S = 75.14628i + 0.i643580025 (t- t.)

- 9296 X AO-  (t - t) 2 - 3?1 X 10 19 (t _ t,)- 3

where t, is the time at the epoch 1900 January 0.5 = J. E. D. 2415020.0. If we measure angles

in radians, then

4



= 4.52360151485 - 9.24Z22OZ94Z34919 X 10-4 (t - t*)

+ 2.717477645355 x 10- 14 (t - t*) 2 + 8.72664625997 X 10-  (t - t,)3

c= 1.31155002408 + 2.868588295626071 X 10-3 (t-t ) (7)

- 1.62245807Z6539 x 0- 3 t - t-)

- 5.4105206811824 X 10-21 (t- t,)3

From these equations it easily follows that

d =-9.2422029423499 X 40-4 - 5.434955Z90710 X 10- 14 (t - t)

+ 2.617993877994 X 10-24 (t - t)2

(8)
dcw = Z.86858829562607t X 0.3 .- 3.2449161453178 X 0- 3 (t - t
dt

- 1.62345620435472 X 10-20 (t - t,)2

d2 2 = 5.434955290710 x 10- 14 + 5.235987755982 x 0-21 (t -tQ
dt 2

.(9)

d zW= -3.2449464453478 X 40-1 3  3.24634240870944 x 40- 20 (t - t)
dt 

J

42 3 1Let (v , v , v3) be a coordinate system such that the v axis points toward the perigee of the
2

mean lunar orbit, the v axis lies in the orbital plane and points in the direction of motion at
3

perigee, and the v axis is perpendicular to the orbital plane and completes the right-hand
12 3

system. Let (w, w , w ) be a coordinate system referred to the mean equinox and ecliptic of4

date, that is, a coordinate system such that the w1 axis points toward the mean equinox of date,

the w 3 axis is perpendicular to the mean ecliptic of date and points to the north, and the 2 axis
4 23 12 3

completes the right-hand system. The relation between the (v , v , v3) and (w, w, w 3) coor-

dinate systems, assuming that they have the same origin, is

3 3

w B k  vj jvk Z ,2,3 (10)k ' B3{xv
k= 1 k= 1

where the orthogonal matrix B = (Bj) is given by8

4k

B41 = cos Q cos w - sin n sin w cos i

B2 = -cos sinw -sin 2 cosc cosi

B 3 = sin S2 sin i

2
B4 = sin S cos W + cos S2 s:nW cosi

2
B z =-0 s sin w + cosS2 cos w cosi

5



B3 =-cosS sini

3
B1 = sin w sini

3
B2 = cos o sini

3
B 3 = Cosi (01)

We have

dB 3  0BJ 5BJ
k k dQ Okdw

dt - 8S2 dt +  o dt

d BkB da2 B j dwk + j,k =1,2,3 (2)dt M dt 2 w dtZ

02J I)Z +Zk 0' dwo)- 8k dn2 dco
dt a 2 dt 8S2 aco dt dt

where

aBk 2 B B 8Bk
-Bk k = B 0 , k = 1,2,3 (13)

B . aBZJ  . 8B 3j
B -B 3  0 = 0 , j=, 2, 3 (14)2 B 2 2 B 3

B5 1 k Bk 8z - - = 0 k 1, 2,, 3 (15)
k Bk -M z B OR 2 ,

a B3  a2  D2B a~
- B J- = 0 j = , 23 (16)

a2 B 4 2 2a 2 B3

B4  2 1' 1, k ~ i 0
' __ B 2  5Qaw z &0
2 B 2 2 B j,k = 1,2,3 (17)

B 1 2 B 1 2BJ 0B 2  23B 2

Let (y , ,y ) be a coordinate system referred to the mean equinox and equator of 1950.0,4
that is, a coordinate system such that the y axis points toward the mean equinox of 1950.0, the
y axis is perpendicular to the mean equator (of the Earth) of 1950.0, and the y axis completes

the right-hand system. The notation 1950.0 denotes the instant near the beginning of the calendar
year 1950 when the longitude of the mean Sun was 18h 40m so that 1950.0 is J. E. D. 2433282.423. 9

1 23 1 23
The relation between the (y. y , y3) and (w , w , w ) coordinate systems is given by

3 3
kJ Aw k w= Ajkyk j=1,2,3 (48)
k=1 k=1

6



wvnere expressions for the orthogonal matrix A z (AkJ) and its derivatives dA/dt and d zA/dt 2 are

given as functions of time in Appendix B.

Combining (10) and (18) we see that the relation between the (y , y , y ) coordinate system

referred to the mean equinox and equator of 1950.0 and the (v , v , v ) coordinate system with v
3

axis pointed toward the perigee of Brown's mean lunar orbit and with v axis perpendicular to

Brown's mean lunar orbital plane pointed toward the north is

3 3

yJk CJvk  
, vJ= C cky , j ,2,3 (19)

k=t k=1

where the orthogonal matrix C AB is given by

3Gb j'k A.B. (20)

Ck i Ai Bk j, k = ,2, 3 (

The derivatives of the matrix C are

dC dA B +A dB1
dt dt dt

2 2 ZB~(21)

d2C d2A + dA dB dB

-dt z  ---t dt dt+ 't2

We are interested in a body moving in Brown's mean lunar orbit with position coordinates
4 2(v , v ). The position, velocity and acceleration of this body in the coordinate system referred

to the mean equinox and equator of 1950.0 is then

2
yJ= C Cjvk

k=1

z k 2_y = C dv k +Zdk

dY t Ck d d-t" v j :1 Z, 3 (22)

k=1 k=1

d2 y3. 2 2k zdC 3  k 2 d z

d =Y Cj d -+ 2 E + k vt + E k1, k
k= k k=t k=1t

The mean anomaly L at time t in Brown's mean lunar orbit is

L = - F' = -63?89539Z + 13-0649924465 (t - t:)

- z2 3 1
+ 6?889 X 042 (t - t,.,) + 2099 x 10 - 9 (t - t,) (23)

If we measure angles in radians, then

L = -4.154849673 + 0.22802743493964404 (t - t,)

1 1.202357321699 X 40 - 13 (t - t:) 2 + 5.218534463463

X 10 (t- t,) . (24)

7



From this it follows that

dL = 0.22802713493961401 + 2.404714643398 X 0 - 1 3 (t - t)
dt

+ 1.5655603390389 x 10 - 2 0 (t - t*)2 (Z5)

d2L = 2.404714643398 X 0 - 13 + 3.1311206780778 x iO - 2 0 (t - t",)

dt
2

The eccentricity e of Brown's mean lunar orbit is constant: 2

e = 0.054900489 (26)

The semimajor axis a of Brown's mean lunar orbit is also constant. By inference from Ref. 2,

we can assume that

a = 60.2665 equatorial earth radii (27)

Let u be the eccentric anomaly at time t in Brown's mean lunar orbit. It is determined by

solving Kepler's equation

L = u - e sin u (28)

12z
by iteration. Then the radius distance p and the components of position (v , v ) in Brown's

mean lunar orbit at time t are given by 1 0

p =a(1-ecosu)

I
v = a(cosu- e) (29)

2 2
v = a -e sinu

From (28) it follows that

du 1 dL (30)
dt (1-e cosu) dt

so that by (29)

dv a sin u dL
dtF (1-ecosu) dt

dv 2  a -e 2 cosu dL 
(31)

dt (1 - e cosu) dt

dv 1 a [i d L (cos u- e) d
dt 2 - dte cos(U) -i .. cosu)

(32)

d 2 av 1 - e U d L sinu (dLZl
dt 2  (1-e cos-u) cosu u) Z- e cosu)

The position, velocity and acceleration in the coordinate system referred to the mean equinox

and equator of 1950.0 is then given by (22).

8



IV. PARTIAL DERIVATIVES IN BROWN'S MEAN LUNAR ORBIT

Let

= sernimajor axis at time to of Brown's mean lunar orbit

e = eccentricity at time to of Brown's mean lunar orbit

i = inclination at time t o of Brown's mean lunar orbit to the mean
equator of 1950.0

= ascending node at time to of Brown's mean lunar orbit on the mean
equator of 1950.0 measured from the mean equinox of 1950.0

= argument of perigee at time to of Brown's mean lunar orbit
measured from the ascending node on the mean equator of 1950.0

= mean anomaly at the initial time to in Brown's mean lunar orbit.

In this section we shall derive the expressions for the partial derivatives of the position, velocity

and acceleration in Brown's mean lunar orbit with respect to these quantities.

We of course have N = a and F = e. Let

M
= (yM s ) M-C (33)

s

Then the mean motion in Brown's mean lunar orbit is

n = jil/Za-3/2 (34)

If the orbital elements of Brown's mean lunar orbit were not functions of time, we would have

the mean anomaly L at time t given by

L= f+ n(t-t o )

By this equation and expression (Z4), the mean anomaly L at time t in Brown's mean lunar

orbit can be written in the form

L=I+n(t-t o ) + L(tt-to) + L2(t-t ) + L (t-to

so chat

aL 3 n(t - to )

E Z a

__- 0 (35)

OL

Then from (Z8) it follows that

au 3 n(t - t o )

E1 Z a(l-e cosu)

au sin u (36)
-3 (1-e cosu)

au 1
- e cos u)

9



Differentiation of (Z9) with respect to li, U and 1 gives

v- 1 3  nsinu(t-t o) '0

(cr~)~(eou j (37)(Cos - e + 2 (1- e cos u)
av 2 ez  3 n I1- e cos u(t- t 0) 

(3 )

a-- eZ sin u - 1-e cos u)

_v 1 a sinz u 8v z  ae sin u a e2 sin u cos u_(38)-- a- , - + (38)osu
(-e cos u) ' = -- ( e cos u)

l -e

8v- a sinu av a -eZ cos u
S (- e os u) (-ecos u) (39)

For any parameter F that is independent of time (such as the initial orbital elements), we haved a a d
a a Thus, either differentiating Eqs. (31) and (32) with respect to , , Tor differ-dt aF a dr"

entiating Eqs. (37), (38) and (39) with respect to time, we obtain
d ( v )  3 n sinu 1_____in u_3 n(t-t) (Cosu-e) ...

. TAT) =Z (1-e cosu) (-e cosu) dt 2 0(-e os u)z

I (40)
d /v2 3 n 1- e2cosu + -e Z  dL [ 3 n(t-t ) sin u(4

d- 8 -Z (1-e cos u) e cosU) dt 2 -e cos]u)z

d ( a sinu dL r (cosu-e) 1
d- au (-e osu) 2 T- cosU+ (-e cosu)

r ii (41)

d(v 2:) a d L ecos u + I --e? Co .2 i ]1 (1

UT(U0-c ecos u) dt 7 1 ecs) [COU (- ouJez)g -e -( e cosu 0(t Csu

d ( v a(cosu-e) dL d ( J)=a 1 eZsinu dL

1 nt- os u- e

dt Z(- ecosu) dt3 z  (4e2cosu)2

+ 3n(cosu-e) dL I (-)
(t-e CosU)3 dt --e cos u)3  dtu

+3 (t-to) sinu 3e(cosu- e)
-(cosu) (-e cosu)[ 1 5- co-su)]

/0v 2 \ _________ 
2 L _ [cn(t -t sillu (43)

dt 2 ad (1-e cosU) dt 0 ( o-e cosu)

+3n NI - e2 sinuCL 4I- (dL) Z
(1 - c cosu)3  dt ( -e cosu)-

x sin u+ *1 nI -t0 3e sin z _ o2 1 -( ecosu) ( -e cosu) cosu

10



- a sinu d2 L (Cosu+ (cosu-e)

d('e u2 [ (1 - e cos u) ]
dtL (2 - e cos U)( -

(4+ cosu ,('-) -(cosu-e) -(4-e ) + (4-e cosu)

d D)~a cos u - )+ -( -':U lz os3 sin u I)e
d( e (e cos u)

41~ co u)m
d2  v a d L e cos u + i e o u sisn u

d ""]-) (I -ou -t j ez + ecsu co u (1- e cos u) '(44)

+ a idL2 e sinu -e 2

cosu) - ez ( - e cos u)

Scossin
3 u

X 4 sinu (1s - e cosu)]

= _ u-e) 2 L a sinu dL 2 3e(cos u - e)
t2 \of (-e cosu)3 dtz  (1-e cosu)4  d (4 -ecosu)

.. . . . . . . . . .... . . dL 2 (45)

dt O (1- cosu)3  dtz  (1 -e cosu) 4

X cos + 3e sin2 u(1- e cos u)]

Let & denote one of the parameters i, 6, 7. By (22) we then have the partial derivatives of the

position, velocity and acceleration in Brown's lunar orbit with respect to a, U, i given by

ayJ

k=14

d kK L d Ck( 2 d 3

k=4 k=4
j 4 ,2, 3 .(46)

dz (.>d2 (D)k 2 dC j  (avk)Z ~ Cj k Cdt M k d d-t dt) dt

k=1 k=

z d 2c j  k
+zi Z k d vk2 a

k=1 dt

Next, we define

io = inclination of Brown's mean lunar orbital plane at time to on the
mean ecliptic of time to

Eo = ascending node of Brown's mean lunar orbital plane on the mean
ecliptic of time to measured from the mean equinox of time to
along the ecliptic

o argument of perigee of Brown's mean lunar orbit at time to
measured along the orbital plane from the ascending node on
the mean ecliptic of time to.

44



Further, let i, U7, Z be the similar reference angles at the initial time to of Brown's mean lunar

orbit relative to the coordinate system (y, y , y ) referred to the mean equinox and equator of

1950.0 as defined at the beginning of this section. Preliminary to finding the partial derivatives

of the position, velocity and acceleration in Brown's mean lunar orbit with respect to i, , w,

we shall derive the expressions for the partial derivatives of i o , 0 o WU with respect to i, f, co.

By (ZO) and the fact that the matrix A is orthogonal, we can write

3

BJ= A C k j,k = 1,Z, 3 (47)

where the matrix B is given by (11) with. the angles i, £2, w replaced by i0 , ao 0Wo' the matrix

C is given by (01) with Bk3 replaced by CJ and with the angles i, fl, w replaced by i, an, ad

the matrix A is given in Appendix B evaluated at time to. From (47) it follows that

3

cosi = A 3 , 0 .i o0 < 180 (48)

3
sini sins? = AIC 3

0 o 1 3
2=1

0'f < 0 < 3600 (49)
3 o

-sini cos = I
2=1

3

sini sinwo = A3C
2=1

0 ° . . w <3600°  (50)
3

sin i o cos wo = 3 A 3 C(

Let E denote one of the parameters i, 2, co. Differentiating (48) we obtain

3 fC3
ai 0  1 A I 3 2 (51)

Tef sini0i 3 O

Differentiating the equations in (49), we obtain

3 fi
sini cos R + cosi sino- -T A

an i 3 3C fC

sin! sin S 0 - cosi cos - = A __
o 0 ° o 0 a z a3F

f=1I

Multiplying the first of these equations by cos 0 0 and the second by sin Q 0 and adding, we s2c that

12



0/ 3 A ac" 3A ac
~os5l O  / i- sinflo , A - (5Z)

Differentiating the equations in (50), we obtain

aw3 C

sinio CoS co 0 + CoSi n sw - I

awo aio I

-sini sine °  0 + cosi cosw ° 0 - = A3 I-
0= 3

Multiplying the first of these equations by cos w and the second by sinw0 and subtracting, we

see that

ac 1 _ a0<>o ' oso W.----i,,% 7,% (53)
aF si ( 3 sin 3

Finally, using expression (11) for the matrix C with Bk replaced br CJ and the angles i, Rl, w

replaced by i, _, w, we see that

k -Ck C- = 0 , k = 1, Z, 3 (54)

9-- =c z =u -- c a -o , j=1,2 ,3 (55)
5W 2 az 4-

0C 02 3 0
a- = C sin Q - C3 sill 2 i=sin n cos

-1 - Cos S2 cosT -i -cosT cos (

3 C c3 3

n- = sw cosm -- Cos co Cos sin"

In (56) the angles i, T, w are determined by

cosi = C , 0 .< i< 180 (57)

sin i sin 2 = C 3
0 < P < 360 (58)

-sini cos f = C

sin sin = C

%I I 00,<, a < 3600 (59)
3

sin 
i cosc w = (

13



1 2 3 3

Let (a o , 2 3o ) denote the quantities (i o , 0ol W ) and let (Mi 23 denote the quantities

(T, 5, 7). Then by (22) the partial derivatives of the position, velocity and acceleration in Brown's

mean lunar orbit with respect to the initial angles 7, , are

Da m=1 a k=1 ace0
3 m [3 2C "k

m=1 k=1 k10

j dd 2, 3

2 a acj Z ~k 2  ta k 4 1. 21, 2,3 (60)

mz 8 O-= dt. m

dt Z Qy m= k= 8 o odv k=

+ d ( - vk]

k~t dt

where the 3 X 3 matrix (8a InM) is determined from formulas (51), (52) and (53) evaluated at

the initial time t . By (20) and (21) we have

acj 3 B

2m Ali In.

dit \0a 0 / L d~ 8 oa~ t /j= ,
Tt Z - t oa m L a ce m B j = 1, , 3

-0 1= +0 ddt\-'- k 1, 2
3i kj d 3  1  m= 1,3 .(61)

Let ac 2 m3 d

3/c~ dA z B2

ci t~aa + Z AT a2Z k\
a cit m (d0

f=1 0

1 2 3
Let a ,a , a denote i, 0, co. Then by (6) we can write

ai a o + aa(t- t )+ a(t-t )2 + a (t-t 3

0 1 o 2 o 3 0

so that

2B Dk OBk
-= 4,2,3 k = , 2 (62)

0

In (62) the partial derivatives with respect to a2 = 9 and a3 cw are given by (43) and (44), and
3

the partial derivatives with respect to a = i are given by

14



A2 3

- BI sing -a -- BI cos.Q a = sin w cosi

aB,' 3 aBZ, 3 
(63)

= Bz sin - -B0 _ osB cosw coi

By (12) and (62), we have

dB' I a a ak0 d k o ( Itk dS2 +a Okdw

aa k 3 = a / dt~D TW(aj /dt
0I

a d 2Bk I a / aBk f z IaBk d2
a-+ k (

aJ\ dtZIa- \) T-- dt aw \ace ! dtZ j= 1,2,3
k= 1,2

+ 2  aB (dS) 2 2  ( B k 2 f = 1, 2,3 (64)

a z  ItB d, 8d I d

+ 2 2 3aj dt
aS2 (a aw ka

2
+Za /-k repace by

where the partial dtrivatives of aB / aaJ are given by (13) through (17)'with Breplaced by

Bk/aa. 
B

V. DETERMINATION OF MOTION AND PARTIAL DERIVATIVES
WITH RESPECT TO INITIAL CONDITIONS

Let (xmI -x 6e) denote the position and velocity of the Moon relative to the Earth, and
i me melet (ye ..... Y me) denote the postion, velocity and acceleration in Brown's mean lunar orbit.

let -, me)deoeteps
Let

k k k
me ' me m k,....6 (65)

1 6
Then by (4) the ( me. 6e satisfy the system of equations

k
d me m

me k+3
dt 4 me

k+3 /c Kd4 me =-Ms \(M Xme k+6 tk Ik

dt k \ me= I1, 2,3 (66)

k - I k
+ H + \ivn F M e

kIe k 3 = when t =t
ne one ' 'me cpme 0.

where

It x k I kl. . (67 )
om e  (Xme t t°0

15



PEP determines the position and velocity of the Moon as function's of time by numerically1 6integrating the differential equation system (66) for tie Q ) using relation (65) and
n 9 me me

the fact that the (Yme Yme) are known as functions of time. During the integration the posi-

tions of perturbing planets 1, Z, 4, ... , 9 in the %P k term of (3) are determined from an input mag-
1 2 3netic tape. The position of the Earth-Moon barycenter relative to the Sun (xcs, xcs, xcs) , which

is needed in evaluating the B k term of (3) because of the relations t

k k , k
X M k= 1,2,3 (68)

k k + m k
ms s M me

is determined either from the perturbing planet inptvt tape or from integrating the equations of
motion of the Earth-Moon barycenter given in Ref. 12 along with equations (66).

Let 8xk /13 8 (j, k = I ., 6) denote the partial derivatives of the position and velocity
me 6

of the Moon with respect to initial osculating elliptic orbital elements (Pm, . ... , ), and let

mt /O m (j = ... ., 6, k = 1, .. ., 9) denote the partial derivatives of the position, velocity

and acceleration in Brown's mean lunar orbit with respect to initial mean orbital elements
(6 6). Let

m m

ax k ay k
xme __me

77m., j, k = 1,...,6 (69)

Then by (5) the 1kj (j, k = 1. . 6) satisfy the system of equations

kdflmj k+3

dt = mj

k +3 Ox ax3 kdt Ms \ q'x " ) x me me
dt s r 3 r me me 2= m ftA  aftm/ k= 1,2,3

j -= 1,. 6 (70)

ayk+6  k
-°me- + aBk + k + aHk k  Fk

k k k+3 k+3
nmj = 1omj ' 1mj = omj when t to

where

k k
k { ×me =me ) j,k= 1,...,6 (71)

afm am Itt

The ax k/ap i at the initial time t are determined from the elliptic orbit formulas of Ref. 13.me m 0-
PEP determines the ax k/ap (j , k 1, ... , 6) as functions of time either by assuming that

kme. m
they are equal to the aym /aFJ (j, k -... , 6) or by numerically integrating the differential

me m

16



kk
(j, k 4., 6) using relation (69) and the fact that the ayke /

equation system (70) for the me.

-3 (j ... , 6, k = ,... 9) are known as functions of time. PEP has these two options,afxm k  k -

because it might be sufficiently accurate to assume that O /akep ayk /a3j in the least-me m me m
squares process of fitting to observations. As mentioned earlier, not having to follow the exact

procedure of numerically integrating equations (70) would save a great deal of computer time.

We intend to adjust the initial osculating elliptic orbital elements rather than the initial

position and velocity in the least-squares process of fitting ephemerides to radar and optical

observations, because the method of integration we use makes it easy to calculate the partial

derivatives of position and velocity with respect to the former parameters and because the former

parameters should be less correlated than the latter. The elliptic orbitdi elements (6 ,... , 1)

we have used i: this report and in Ref. I are:

a = semimajor axis

e eccentricity (0 . e < 4)

i = inclination (0 < i< 180 °)

S2 longitude of ascending node (0°< fS < 3600)

w = argument of perigee, measured along the orbital plane from the
ascending node (0 °0< w < 3600)

1 = initial mean anomaly

Some other choice of elliptic orbital elements could be less correlated i elative to the radar and

optical data than this choice. For instance, this would very likely be the case if we replaced

the angles (2, o, 1 ) by the angles

n + (72)

M Q S + +, +

since the angles in (72) are those generally used in celestial mechanics and were probably arrived

at from the results of experience with optical data. The formulas in this -report and in Ref. 1 are

stated in terms of the angles (Q2, w, 1 ). The partial derivatives with respect to ( , , M) can be

determined from these results because of the relations

a a a (73)
aw 820'

17



APPENDDC A PRECEDING PAGE BLANK
EXPANSION FOR PRECESSION MATRTX

.1 2 3
Let y .y y ) be a coordinate system referred to the mean equinox and equator of 1950.0

(J. E. D. 2433282.423), and let (x ,x , x 3 ) be a coordinate system referred to the mean equinox

and equator of (fate. Then the relation between them is given by

3
yJ = V pj x k

kzl
j= , 2, 3 (A-i)

3
x= v' 1 y k

k.= I

where the orthogonal matrix (Pj) is the precession matrix.k 14
To glive the establisled expression for the precession matrix, we first define the angles

to 
= 2304.1948T + 0'.1302T 

2 + 0'.'0179T
3

z 2304 1.'948T + I'.'093T 2 + 0'.'0192T 3  (A-2)

0 = 2004'.'255T - 0'.'426T - 0'.'0416T 
3

where T is measured in tropical centuries of 36524.21988 ephemeris days from the epoch

1950.0 (J. E. D. 2433282.423) to the instant of interest. Then the precession matrix at this in-

stant is
1 5

P = cos r cosO cosz - sin.t sinz

2
P =-snt cos 0cos z- cost sinzI "*o -o

3
P= -sine cosz

P? = cos ° cose sinz + sin Zo cosz

2 o-
P2 -sino cos O sin z + cos ro cos z (A-3)

3
P 2 = -sinO sinz

P 3 - cos" sinO

2
P 3 =-sin t sinO

3
P 3 = cos 0

Let T denote the time from the. epoch 1950.0 (J. E. D. 243328Z.423) in units of 10.000

ephemeris days. Then by Taylor's theorem we have

19
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Le

P d n j, k = 1, 2, 3 (A-4)

n=0 r=

Treating the coefficients in (A-2) as exact, some simple calculations show that the terms up to
the fifth power in the Taylor expansions (A-4) are:

P 1 = 1.0 - Z.ZZ603398052517 X 10-5T 2 - 2.6903385325366 X 10-9T3

1

+ 8.191221606878 X 10-11T4 + 1.79948222850 X 10- 4T5

P12 = -6.119064710033514 X 10- 3" - 5.06975739290688 X 10- 7T 2

+ 4.5321716219079 X 10- 8r 3 + 8.619581795926 X 10- 2 r 4

- 1.02943658327 X 10-13-T5

P 3 = -2.66039972277Z102 X 10-3 T + 1.54818397804898 X 10- 7 "Z

+ 1.9729Z01591810 X 10-8T3 + 1.960730253191 X 10-12T4

- 4.39298354075 X 10-14T5

P = 6.119064710033514 X 10- 3T + 5.06975739290688 X 10-7T2

- 4.5321716219079 X 10-8T3 - 9.636891635856 X i0-12 T-
i

+ 1.02604298897 X 10-1375

(A-5)
P2 = 1.0 - 1.87214764627888 X 10 - 3.1022173551368 X 10 T

+ 6.882478825535 X 10- 11 4 + 1.91215207447 X 10- 145

3 - 8.13957902909886 X 10- 6 r 2 - 5.8309700675934 × 10-10T3

+ 2.99436060680Z X 1011T4 + 5.71739459043 X 10-15T 5

P I = Z.6603997ZZ772102 X 10- - 1.54818397804898 X 10- 72
3

1.9729201591810 X 10- 8 ,, 3 + 3.791379581151 X 10-13T 4

+ 4.50404085077 X 10- 14T
5

2 -6 2 13
P 3 =-8.13957902909886 X 10 T-. 1.8168268497009 X 10-T

+ 3.024323052660 X 10- 11 4 + 2.58550054981 X 10 - 1 7 T 5

. = 1.0 - 3.53886334246294 X 10-67.2 + 4.1187882260017 x 10-10T3

+ 1.308742781343 X 10- 11r 4- 1.12669845971 X 10- 15r5

20
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APPENDIX B
EXPANSION FOR MATRIX A AND ITS DERIVATIVES

The mean obliquity of the ecliptic is 1 6

c = 13°Z7'08'.'Z6 - 46'.'845T - 0'.'0059T 2 + 0'.'00181T 3  (B-i)

where T is mea,.ured in Julian centuries of 36525 ephemeris days fron, the epoch 1900 January

0.5 E. T. = J. E. D. Z415020.0 to the instant of interest. The relation between a coordinate sys-

tem (x1 , x2 , x3 ) referred to the mean equinox and equator of date and a coordinate system

(w , w 2 , w 3) referred to the mean equinox and ecliptic of date with the same origin is

I I
x =

2 2 3.
x = w cos -w sin . (c-2)

o o0
3 2 3

X = w sia C 0 + w Cos CO

Let r denote the time from 'he epoch 1950.0 (J. E. D. 2433282.423) in units of 10,000 ephemeris

days. By treating the coefficients in (B-I) a.; exact, Taylor expansions similar to (A-4) gi c

sin c= 0.3978811865927521 - 5.70513893192403 X 10-4T

- 1.831208750b169 X 10-9 T
2 + 1.652267540061 X 10-10T

3

+ 4.45783951328 X 10- 157 - 2.36469209 X 10-19T5

(B-3)

Cos = 0.9174369522509674 + 2.47424898500217 X 10-5T
0

- 1.31335717 i992 X 10-9 T - 7.173527734648 X 10- 1r3

+ 1.02732897621 X 10-140 4 - 3.29806267 X 0-190 5

Combining transforrmations (A-1) and (B-Z) gives transformation (18), where

AJ = P j COS EO + P3 J sin j = 1, 2,3 (B-4)

2 Z o 3 0

A =PJ cosc -P 3 sinE c3 3 o 2 o 1

The Tdylor expansions for the AJ (j = 1, 2, 3) are given by the first three equations in (A-5). To

determine the Taylor expansions for the AJ, A3 (j 1, 2 3), we multiply and add the expansions

given in (A-5) and (B-3) as indicated in (B-4):

21
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4 3 -72ZA2  6.672379076707188 X 10 T3 + 4.03140345445988 X 10 T

- 4.94Z1227156709 x 10 -83 - 8.685948302421 X 10 -Z T-4

+ 1.11902061670 X 10-13-T
5

A2 = 0.9174369522509674 + 2.47424898500217 X 10-5TA2 =

- 2.04156730272966 X 10- 52 - 2.8443776398581 X 10-9T 3

+ 7.513826113715 X 40-I11T4 + 1.75327407517 X 1014T 5

A3 = 0.3978811865927524 - 5.70543893192403 X 10- 5T

- 8.87742893170170 X 10-6r " - 2.0534553328574 X 40-O T3

+ 3.266231487901 X 10-11T + 4.79023554343 05 5

(B-5)

A3 = 6.08828576338671 X 40-6- 4 7.173828422Z453 X 10-8 7
2

3

- 3.4836043645777 X 10-711T -- 9.238939614350 X 10-
14T 4

- 1.72691125954 X 0-16T5

A3 = -0.3978811865927521 + 5.70513893192403 X 0- 5T

- 1.67960985290526 X 10- 8T -- 3.3710116720406 X 10- 11T3

+ 1.616276978960 X 0-13T4 + 7.61970380671 X 10-16T5

A 3 = 0.9174369522509674 + 2.47424898500217 X 10-5 TA3

-- 9.41199405263504 X 10-97 2 - 1.3793679110716× 10- 11r3

+ 6,983259897028 X 10- . + 3.21079987643 X 40-6T5

The expansion for the matrix A given in (B-5) and the first three equations of (A-5) haG 13

decimal place accuracy 30 years away from the epoch 1950.0 and 9 decimal place accuracy 300

years away from the epoch 1950.0. Actually, we treat expansions (A-5) and (B-5) as defining

the matrix A so that the formulas for the mean lunar orbit involving the matrix A can b'. regarded

as exact, except foi those which assume that the inverse of A is equal to its transpose. But

this is only done in computing the matrix (Do m/DNI) in (60), so that only those formk *s involving
0

partial derivatives with respect to initial mean orbital elements (i, 02, w) are affected. Because

of the use which is to be made of these quantities, any possible loss in accuracy due to the

assumption that the inverse of A is equal to its transpose is unimportant.

Let t denote time measured in days. For a function f defined by

5
f Z f f r n

n=0

22



we have

5

dZ--f =0 - 4 Z nlnn- I)n n -

dt2  1 - n
nrZ

Thus, the coefficients in the expansions for dA/dt and d 2A/dt z are easily derived from the

expansion for the matrix A given in (B-5) and the first three equations of (A-5).
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APPENDIX C
DIFFERENCE BETWEEN TRUE LUNAR ORBIT AND MEAN LUNAR ORBIT

The graphs of Fig. C-1(a-c) represent the differences between the x, y and z components

anC' the radius vectors in the true lunar orbit and in Brown's mean lunar orbit during the .50-

day period from 9 January 1967 to 3 April 1968. The distance unit is earth radii and the coor-

dinate system is referred to the mean equinox and equator of 1950.0. The true lunar orbit coor-

dinates were taken from the Jet Propulsion Laboratory Ephemeris Tapes 1 8 the mean lunar orbit

coordinates were evaluated by using the formulas in tnis report.

From these graphs it is clear that the mean lunar orbit does indeed follow the true orbit on

the average as the Moon moves at a distance of 60 earth radii from the Earth. However, there

are considerable oscillations about the mean orbit (mostly due to the Sun), so that numerically

integrating the equations for the difference between the true and mean lunar orbits represents

only a 11 order-of-magnitude improvement over numerically integrating the original equations

of -notion. Although tnis is a considerable saving, it is not as large as one might hope.

Brown's lunar theory represents the motion of the Moon by the mean lunar orbit plus over

1650 trigonometric terms. Acdding a few of the larger trigonometric terms to the mean lunar

or-bit would yield an orbit which gives a further saving in representing the true orbit of the Moon.

(From the graphs it would appear that the main terms of this addition would have periods of about

14 davs and somewhat less than a year.) At some future time we shall alter the mean lunar orbit

subroutines in PEP in this manner; for the present they utilize the formulas in this report.

PRECEDING PAGE BLANK
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